Pressure and temperature dependence of hydrophobic hydration: volumetric, compressibility, and thermodynamic signatures.

نویسندگان

  • Maria Sabaye Moghaddam
  • Hue Sun Chan
چکیده

The combined effect of pressure and temperature on hydrophobic hydration of a nonpolar methanelike solute is investigated by extensive simulations in the TIP4P model of water. Using test-particle insertion techniques, free energies of hydration under a range of pressures from 1 to 3000 atm are computed at eight temperatures ranging from 278.15 to 368.15 K. Corresponding enthalpy, entropy, and heat capacity accompanying the hydration process are estimated from the temperature dependence of the free energies. Partial molar and excess volumes calculated using pressure derivatives of the simulated free energies are consistent with those determined by direct volume simulations; but direct volume determination offers more reliable estimates for compressibility. At 298.15 K, partial molar and excess isothermal compressibilities of methane are negative at 1 atm. Partial molar and excess adiabatic (isentropic) compressibilities are estimated to be also negative under the same conditions. But partial molar and excess isothermal compressibilities are positive at high pressures, with a crossover from negative to positive compressibility at approximately 100-1000 atm. This trend is consistent with experiments on aliphatic amino acids and pressure-unfolded states of proteins. For the range of pressures simulated, hydration heat capacity exhibits little pressure dependence, also in apparent agreement with experiment. When pressure is raised at constant room temperature, hydration free energy increases while its entropic component remains essentially constant. Thus, the increasing unfavorability of hydration under raised pressure is seen as largely an enthalpic effect. Ramifications of the findings of the authors for biopolymer conformational transitions are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analytical Equation of State Extended to Copolymers

calculate some thermodynamic properties of molten polymers including specific volume and isothermal compressibility (S.M. Hoseini, Physical Chemistry & Electrochemistry, 2 (2014) 56-65). This work extended that EOS to predict the volumetric properties of some molten ethylene copolymers including ethylene/1-octene, ethylene/1-butene (xethylene equal to 0.8543 and 0.563), ethylene/propene. The ab...

متن کامل

Hydrophobic hydration in cyclodextrin complexation.

We report temperature-dependent acoustic and densimetric data on changes in volume, expansibility, and adiabatic compressibility accompanying the binding of 1-adamantanecarboxylic acid (AD) to beta-cyclodextrin (beta-CD). We interpret our volumetric results in terms of hydration. Based on our compressibility and expansibility data, we estimate that, at 25 degrees C, the binding of AD to beta-CD...

متن کامل

Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover.

Small and large hydrophobic solutes exhibit remarkably different hydration thermodynamics. Small solutes are accommodated in water with minor perturbations to water structure, and their hydration is captured accurately by theories that describe density fluctuations in pure water. In contrast, hydration of large solutes is accompanied by dewetting of their surfaces and requires a macroscopic the...

متن کامل

Volumetric, Acoustic and Conductometric Studies of Acetaminophen in Aqueous Ionic Liquid, 1-Octyl-3-methylimidazolium Bromide at T = 293.15-308.15 K

The density (d), speed of sound (u) and electrolytic conductivity (Λ) for systems containing acetaminophen, ionic liquid {1-octyl-3-methyl imidazolium bromide, [OMIm] Br} and water have been measured at T = 293.15-308.15 K. The measured data have been applied to calculate, standard partial molar volume ( ), Hepler’s constant , apparent molar isentropic compressibility...

متن کامل

Thermodynamic properties of polarized liquid 3He along different isentropic paths

The dependence of some thermodynamic properties of spin-polarized liquid 3He such as velocity of sound, adiabatic index, isentropic compressibility and temperature on the spin polarization has been investigated along different isentropic paths. The Lennard-Jones potential has been used in our calculations. It has been found that for higher values of entropy, the spin polarization has greate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 11  شماره 

صفحات  -

تاریخ انتشار 2007